## Math 43 Midterm 2 Review

In addition to the following review questions, you must be able to solve any of the questions from the 3D Lines \& Planes handout.
[1] Consider the vectors $\vec{f}=2 \vec{j}-3 \vec{k}$ and $\vec{g}=-\vec{i}-3 \vec{j}+4 \vec{k}$.
[a] Find the angle between $\vec{f}$ and $\vec{g}$. (Your answer should be in radians, rounded to 2 decimal places.)
[b] Find a unit vector perpendicular to both $\vec{f}$ and $\vec{g}$. (Do NOT use decimal approximations.)
[c]
[d] If the terminal point of $\vec{g}$ is $(-7,4,-8)$, find the initial point.
[e] If $\vec{h}=a \vec{i}+b \vec{j}-5 \vec{k}$ is parallel to $\vec{g}$, find the values of $a$ and $b$.
[f] If $\vec{e}=7 \vec{i}+c \vec{j}-5 \vec{k}$ is perpendicular to $\vec{g}$, find the value of $C$.
[2] Let $P$ be the point $(-5,-2,3)$. Let $Q$ be the point $(3,2,-1)$. Let $R$ be the point $(-3,4,-2)$.
Let $\vec{u}$ be the vector with initial point $R$ and terminal point $Q$.
Let $\vec{w}$ be the vector with initial point $P$ and terminal point $R$.
[a] In which octant is $R$ ?
[b] If you start at point $P$, move 2 units down, 4 units back, and 6 units to the right, find the co-ordinates of your ending point.
[c] Write $\vec{u}$ in component form.
[d] Write $\vec{w}$ as a linear combination of $\vec{i}, \vec{j}$ and $\vec{k}$.
[e] Find the magnitude of $\vec{W}$. (Do NOT use decimal approximations.)
[f] Find a unit vector in the opposite direction as $\vec{w}$. (Do NOT use decimal approximations.)
[g] Find a vector of magnitude 6 in the same direction as $\vec{u}$. (Do NOT use decimal approximations.)
[h] If $\|\vec{v}\|=3$, and the angle between $\vec{u}$ and $\vec{v}$ is 2 radians, find $\vec{u} \cdot \vec{v}$. (Round your answer to 2 decimal places.)
[i] If $\|\vec{v}\|=3$, and the angle between $\vec{u}$ and $\vec{v}$ is 2 radians, find the magnitude of $\vec{u} \times \vec{v}$.
(Round your answer to 2 decimal places.)
[j] Find the area of triangle $P Q R$. (Do NOT use decimal approximations.)
[k] Find $\angle Q R P$. (Round your answer to 2 decimal places.)
[1]
[m] Find the general equation of the plane passing through $P, Q$ and $R$.
[n] Find parametric equations for the line which passes through $P$ and is also parallel to $\vec{u}$.
[o] Find symmetric equations for the line which passes through $Q$ and is also perpendicular to the plane $-2 x-3 y+z=9$.
[p] Find the equation of the sphere with $P$ and $Q$ as endpoints of a diameter.
[3] Which octant or octants contain all points $(x, y, z)$ where $x z<0$ ?
[4] Consider the sphere $x^{2}+y^{2}+z^{2}-4 x+6 y+10 z+29=0$.
[a] Find the center and radius of the sphere.
[a] Find the equations of the $x y-, x z-$ and $y z-$ traces of the sphere, and describe each trace.
[5] Write vectors $\vec{d}, \vec{e}$ and $\vec{f}$ in terms of vectors $\vec{a}, \vec{b}$ and $\vec{c}$ in the diagram on the right.


## Math 43 Midterm 2 Review Answers

[1] [a] $\approx 2.94$ radians
[b] $<-\frac{1}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{2}{\sqrt{14}}>$ or $<\frac{1}{\sqrt{14}},-\frac{3}{\sqrt{14}},-\frac{2}{\sqrt{14}}>$
$\begin{array}{ll}\text { [c] } & \\ \text { [d] } & (-6,7,-12)\end{array}$
[e] $\quad a=\frac{5}{4}, \quad b=\frac{15}{4}$
[f] -9
[2] [a] octant 6
[b] $\quad(-9,4,1)$
[c] $<6,-2,1\rangle$
[d] $2 \vec{i}+6 \vec{j}-5 \vec{k}$
[e] $\sqrt{65}$
[f] $<-\frac{2}{\sqrt{65}},-\frac{6}{\sqrt{65}}, \frac{5}{\sqrt{65}}>$
[g] $\left\langle\frac{36}{\sqrt{41}},-\frac{12}{\sqrt{41}}, \frac{6}{\sqrt{41}}>\right.$
[h] $\approx-7.99$
[i] $\approx 17.47$
[j] $2 \sqrt{165}$
[k] $\approx 1.47$ radians
[1]
[m] $x+8 y+10 z-9=0$
[n] $x=-5+6 t, \quad y=-2-2 t, \quad z=3+t$ OTHER ANSWERS POSSIBLE
[o] $\frac{x-3}{2}=\frac{y-2}{3}=-z-1$
OTHER ANSWERS POSSIBLE
[p] $\quad(x+1)^{2}+y^{2}+(z-1)^{2}=24$
[3] $2,3,5,8$
[4] [a] center $=(2,-3,-5)$, radius $=3$
[b] no $x y$ - trace
$x z-$ trace is point $(2,0,-5)$
$y z-$ trace has equation $(y+3)^{2}+(z+5)^{2}=5$ [circle in $y z$ - plane, center $=(0,-3,-5)$, radius $=\sqrt{5}$ ]
[5] $\vec{d}=\vec{a}+\vec{b}, \vec{e}=\vec{c}-\vec{b}, \vec{f}=-\vec{a}-\vec{c}$

